Instructions and recommendations for using the Neuro Future indicator – My Trading – 5 September 2025
3. Validation and retraining control system 3.1. How validation works 3.2. Recommendations for setting up validation (10-20% of the number of examples is recommended) 4. Advanced settings 4.2. Additional parameters 4.3. Activation and scaling settings ActivationPreset – preset configurations of activation functions (Auto/Manual) ActivationTypeHidden – activation function for hidden layers (when configured manually) ActivationTypeOut

3. Validation and retraining control system
3.1. How validation works
3.2. Recommendations for setting up validation (10-20% of the number of examples is recommended)
4. Advanced settings
4.2. Additional parameters
4.3. Activation and scaling settings
- ActivationPreset – preset configurations of activation functions (Auto/Manual)
- ActivationTypeHidden – activation function for hidden layers (when configured manually)
- ActivationTypeOut – activation function for the output layer (when configured manually)
- InputScale – input data scaling method (S11/S01)
- OutputScale – output data scaling method (S11/S01)
- GradientLimiting – Enable gradient limiting
- max_grad – maximum gradient value (with limitation enabled)
4.4 Notification and Logging Settings
- EnableAlerts – Enable trading alerts
- AlertThreshold – alert trigger threshold
- PushNotifications – sending push notifications
- EmailAlerts – Sending email alerts
- SoundAlerts – Sound Alerts
- EnableLogging – enabling the logging system
- ReduceLog – frequency of logging (reduction)
- LogExamples – logging training examples
- LogResults – logging of training results
- LogLoad – logging network loading
- LogSave – logging of network saving
4.5. Additional indicator settings
- UniverseOutputScale – universal output scaling
- FixIndicatorWindowMinMax – fixing the minimum/maximum of the indicator window
- MaxBars – maximum number of bars in the indicator window
- AutoColor – automatic color scheme
- Color – select color (when AutoColor is disabled)
5. Interpretation of results
5.1. Information panel (GUI)
- The information panel displays:
- Network structure – layer configuration (L1, L2, L3, L4)
- Accuracy – current assessment of the accuracy of forecasts
- Training period – the time range of data on which the network was trained
- Activations – activation functions used for hidden and output layers
- Scale type – the method of scaling input and output data (S01 [0,1] or S11 [-1,1])
5.2. Visual elements on the chart
- Forecast Line – a colored line that displays the forecast for the selected bar
- Graphic objects – visualization of future forecasts directly on the price chart
- Vertical lines – represent the period of data used to train the last loaded network
- Color indication – informs about the compatibility of the loaded network with the current symbol and timeframe
6. Integration with advisors (EA)
6.1 To call the indicator from the advisor, use the iCustom() function.
- Example of initialization in the advisor:
int OnInit()
{
// Loading the indicator
indicator_handle = iCustom(_Symbol, _Period, Indicator_Name, FutureBar, File_Name, 0);
if(indicator_handle == INVALID_HANDLE)
{
Alert(“Error loading the indicator: “, GetLastError());
return(INIT_FAILED);
}
return(INIT_SUCCEEDED);
}
6.2 Parameters for optimization in the strategy tester:
- Prediction Number (1 to 6)
- Threshold values for generating trading signals (SignalLimit)
- Network type (Versions) – T1, T2, T3, T4 and their modifications
- Sizes of neural network layers (LL1, LL2, LL3, LL4)
7. Frequently Asked Questions (FAQ)
Q: The network does not load or does not start training.
ABOUT:
- Check the write permissions in the MQL5/Files/ folder
- Make sure there is enough historical data available
- Check the correctness of the specified network parameters (layer sizes)
- Make sure the network files exist and are not corrupted.
Q: What Network type should I choose?
ABOUT:
- T1 – Basic option. It is recommended to start with it
- T1Dif, T2Dif – Strategies that analyze price differences. Can be more accurate for determining directional movements
- T2 – Context-dependent analysis. Takes into account volatility
- T3/T4 – Specialized strategies for accurate determination of trends and impulses
Q: How to determine the input/output scale type?
ABOUT:
- Check the Type parameter on the indicator information panel (GUI)
- If the UniverseOutputScale parameter = true, the display in the indicator window is standardized to the range [-1,1]
- If UniverseOutputScale = false, the output values correspond to the original scale of the selected strategy (S01 or S11)
Q: Why does the indicator use this particular validation method?
ABOUT:
- This approach is standard in machine learning and provides a fair assessment of the quality of the model on data that was not used in training.
Q: How often should the network be retrained?
ABOUT:
- It is recommended to retrain the network whenever market conditions change significantly or every 1-2 weeks to keep the model relevant.
8. Recommendations for use
- Determine the scale type – Understanding the scale of the output data (S01 or S11) is critical to properly interpreting the signals.
- Set up thresholds – Optimize the SignalLimit parameter to your trading strategy and selected timeframe
- Test different types of networks – Strategies based on price differences (T1Dif, T2Dif) can show better results on volatile instruments
- Consider the time frame – High time frames (H4, D1) often require more conservative (larger) thresholds to filter out noise
- Periodic retraining – Regularly retrain the network on new data to keep the model up to date
Important validation notes:
- The validation period is cut off from the end of the historical data.
- For maximum relevance, it is recommended to periodically retrain the network on new data.
- The validation period size should match your trading horizon.
9. Support
If you have any questions or problems:
- First of all, check the logs in the “Experts” and “Journal” tabs. Make sure that logging is enabled in the settings
- Make sure you have enough historical data for the symbol and timeframe you choose.
- Determine the type of network used and the data output scale – this information is often needed for diagnostics
- For complex questions, please contact the indicator’s discussion section on the Marketplace or the developer via private messages
Note: The market and setup recommendations below were given by artificial intelligence based on the analysis of the indicator algorithms. As a developer, I have not tested all strategies on all markets. You are the expert in your trading! Test, experiment and find the best combinations for your style and instrument.
APPENDIX A: Description of strategies (Network type) and recommendations for activation and scaling (implemented in Auto)
T1 – Normalized independent analysis
- Input: Normalized window of L1 opening prices
- Output: Normalized window of L4 predicted opening prices
- The gist: The neural network learns to directly predict future prices based on historical
- Activations: Tanh / Tanh
- Scale: S11 / S11
T2 – Context-dependent analysis
- Input: Normalized window of L1 opening prices
- Output: Predicted prices normalized to the range of input data
- The bottom line: The forecast is scaled relative to the current volatility
- Activations: Tanh / Tanh
- Scale: S11 / S11
T1Dif / T2Dif – Price Difference Analysis
- Input: Differences between future and current prices, normalized to preserve sign
- Output: Predicted price differences (T1Dif: independent norm., T2Dif: input norm.)
- The gist: The network predicts the direction and strength of movement, not the price
- Activations: Tanh (LReLu) / Linear
- Scale: S11 / S11
T3 – Trend Detector with Filtering
- Entry: Normalized Opening Price Window
- Output: If all L4 future bars are above/below the current price, their values are normalized. Otherwise, the output is ignored.
- The gist: The network learns to detect stable unidirectional movements
- Activations: Tanh / Sigm
- Scale: S11/S01
T3Bin – Binary Trend Classification
- Input: Same as T3
- Output: Binary values (1/-1 or 1/0) for each future bar
- Essence: Simplification of the problem to binary classification for clear signals
- Activations: Tanh / Sigm
- Scale: S11/S01
T4 – Pure Pulse Detector
- Entry: Normalized Opening Price Window
- Output: Similar to T3, but learning occurs only on pronounced movements
- The gist: Tighter selection. Focus on finding strong, momentum moves
- Activations: Relu / Tanh
- Scale: S11 / S11
T4Bin – Binary Impulse Classification
- Input: Same as T4
- Output: Binary values (1/-1 or 1/0)
- The gist: Extremely aggressive search for momentum for short trades
- Activations: Relu / Sigm
- Scale: S11/S01
For high timeframes (H4, D1, W1), it is recommended to set more conservative settings: if there was ActivationHidden == Relu, then set ActivationHidden = Tanh;
For low timeframes (M1, M5, M15) more aggressive settings: if ActivationHidden == Tanh, then set ActivationHidden = LRelu;
Summary table of recommendations:
| Strategy | Hidden Activation | Output Activation | Input Scale | Output Scale |
|---|---|---|---|---|
| T1 | Tanh | Tanh | S11 | S11 |
| T2 | Tanh | Tanh | S11 | S11 |
| T1Dif | Tanh(LRelu) | Linear | S11 | S11 |
| T2Dif | Tanh(LRelu) | Linear | S11 | S11 |
| T3 | Tanh | Sigm | S11 | S01 |
| T3Bin | Tanh | Sigm | S11 | S01 |
| T4 | Relu | Tanh | S11 | S11 |
| T4Bin | Relu | Sigm | S11 | S01 |
APPENDIX B – Recommendations for instruments and periods (in Manual mode):
- For volatile instruments (Crypto, Gold):
- More aggressive activations.
- For example for “BTCUSD”, “XAUUSD”
- ActivationHidden = Relu; or LRelu;
- OutputScale = S11; // full range
- For low volatility instruments (Major FX):
- More conservative settings.
- For example for “EURUSD” or “USDJPY”
- ActivationHidden = Tanh; // smooth activations;
- OutputScale = S01; // probabilistic output
- For different timeframes:
- High TF (H4, D1) – more conservative
- ActivationHidden = Tanh;
- ActivationOut = Tanh;
- Low TF (M1, M5) – more aggressive
- ActivationHidden = Relu;
- ActivationOut = Linear;
APPENDIX B – Strategy and Activation Presets Compatibility Table
Legend:
- ✅ Recommended – Perfect match
- ⚡ Alternative – Good alternative
- 🔄 Compatible – Works, but not optimally
- ❌ Not recommended – Bad combination
Key recommendations:
For T1 (Normalized Analysis):
Better: Standard, Asym_Output
Good: Classic, Mixed_Asym
For T1Dif (Difference Analysis):
Better: Regression, Relu_Regression, Lrelu_Linear
Avoid: Classic, Mixed_Asym
For T2Dif (Context-Aware Difference Analysis):
- Better: Regression, Lrelu_Linear, Relu_Regression
- Avoid: Classic, Mixed_Asym, Asym_Output
For T2 (Context-Aware):
Better: Standard, Asym_Output, Mixed_Asym
Good: Classic, Regression, Relu_Regression
For T3/T3Bin (Trend Detection):
Better: Classic, Asym_Output, Mixed_Asym
Avoid: All Linear outputs
For T4/T4Bin (Momentum):
Better: Relu_Regression, Lrelu_Linear, Relu_Network
Avoid: Classic, Mixed_Asym
Simplified recommendations:
For beginners:
For experienced:
For experts:
APPENDIX C – Recommendations for the application of strategies in various markets:
Summary table of recommendations:
| Strategy | Best Markets | Good markets | Not recommended | Peculiarities |
|---|---|---|---|---|
| T1 | Forex Majors, Indices CFD | Metals, Commodities | Crypto CFD | Universal for stable markets |
| T2 | Forex Crosses, Metals | Forex Majors, Indices CFD | Crypto CFD | For instruments with pronounced levels |
| T1Dif | Crypto CFDs, Commodities | Forex Minor, Metals | Forex Major | For volatile and trending markets |
| T2Dif | Forex Crosses, Metals | Indices, FX Major | Crypto CFD | For context-sensitive analysis of price differences |
| T3 | Forex Majors, Indices CFD | Metals, Commodities | Crypto CFD | For clear trend movements |
| T3Bin | All markets (training) | – | – | Universal binary classification |
| T4 | Crypto CFDs, Commodities | Forex Minor, Metals | Forex Major | For strong impulse movements |
| T4Bin | Crypto CFDs, USA Stocks CFDs | Commodities, Metals | Indicatives | For aggressive momentum strategies |
Detailed market recommendations:
1.T1 – Normalized Independent Analysis
Forex Major (EURUSD, GBPUSD, USDJPY): ✅ Excellent – stable trends
Forex Minor (EURAUD, GBPNZD): ✅ Good – moderate volatility
Metals (XAUUSD, XAGUSD): ✅ Good – clear trends
Indices CFD (US30, SPX500): ✅ Excellent – suitable for indices
Commodities (XBRUSD, XNGUSD): ✅ Good – but needs adaptation
Crypto CFD (BTCUSD, ETHUSD): ⚠️ Caution – too volatile
USA Stocks CFD (AAPL, TSLA): ✅ Good – for stocks with liquidity
2. T2 – Context-Aware Normalized Analysis
Forex Crosses (EURGBP, AUDCAD): ✅ Excellent – good levels
Metals (XAUUSD, XPTUSD): ✅ Excellent – clear technical levels
Indices CFD (DAX30, FTSE100): ✅ Good – but there may be gaps
Forex Major: ✅ Good – but less pronounced levels
Commodities: ⚠️ Conditional – depends on the specific product
3. T1Dif – Price Difference Analysis
Crypto CFD: ✅ Ideal – high volatility
Commodities (Oil, Gas): ✅ Excellent – sharp movements
Forex Minor (exotic pairs): ✅ Good – high volatility
Metals (XAUUSD): ✅ Good – during news
Forex Major: ⚠️ Conditionally – only during periods of high volatility
4. T2Dif – Context-Aware Difference Analysis
- ✅ Forex Crosses (EURGBP, AUDCAD, EURCHF) – the best choice
- ✅ Metals (XAUUSD, XAGUSD) – especially in the Asian session
- ✅ Indices CFD (DAX30, FTSE100) – on daily timeframes
- ⚠️ Forex Major (EURUSD, GBPUSD) – only during periods of high volatility
- ❌ Crypto (too volatile)
5. T3 – Trend Detection with Filtering
Forex Major: ✅ Ideal – stable trends
Indices CFD: ✅ Excellent – clear daily trends
Metals: ✅ Good – especially gold
Commodities: ✅ Good – trending movements
Crypto CFD: ⚠️ Beware – Too Noisy for T3
6. T3Bin – Binary Trend Classification
All markets: ✅ Universal – for training and testing
Especially: Forex Major, Indices – for reliable signals
For Beginners: Best Choice to Start With
7. T4 – Pure Momentum Detection
Crypto CFD: ✅ Ideal – strong impulses
Commodities: ✅ Excellent – sharp movements on news
Forex Minor: ✅ Good – volatile pairs
Metals: ✅ Good – especially silver
Forex Major: ⚠️ Only during periods of high volatility
8. T4Bin – Binary Momentum Classification
Crypto CFD: ✅ Ideal – for scalping
USA Stocks CFD: ✅ Excellent – High Volatility Stocks
Commodities: ✅ Good – for news impulses
Metals: ✅ Good – gold during crises
Indicatives: ❌ Not recommended – low volatility
APPENDIX D – Timeframe Recommendations:
For Forex Major:
For Crypto CFDs:
T1Dif, T4, T4Bin: M5, M15, H1
T3: H4, D1 (for long-term trends)
For Indices CFD: For Commodities:
T1Dif, T4: M15, H1
T3: H4, D1
Special recommendations:
Asian session (Forex):
T1, T2 – for range of motion
Avoid T4, T4Bin – low volatility
European/American session:
T3, T4 – for trend movements
T1Dif – for breakout strategies
News events:
T4, T4Bin – for capturing pulses
Avoid T3 – the filter can cut off sudden movements
Periods of low liquidity:
T1, T2 – more stable operation
Avoid T1Dif, T4 – may be false signals
Cross-market recommendations:
Start with Forex Major + T3Bin – the most stable option
For training use T3Bin on different markets – universal strategy
For aggressive trading: Crypto CFD + T4Bin – high volatility
For conservative trading: Indices CFD + T1 – stable trends
APPENDIX E – Recommendations for setting up neural network architecture:
Timeframe settings:
1. Short timeframes (M1-M15)
Input layer (L1): 12-15 neurons – short price history
Hidden layer 1 (L2): 8-10 neurons – compact processing
Hidden Layer 2 (L3): 0 – usually not required
Output layer (L4): 3-4 neurons – short-term forecast
2. Medium timeframes (M30-H1)
L1: 20-25 neurons – average history
L2: 12-15 neurons – balanced processing
L3: 0 – can be added if necessary
L4: 5-6 neurons – medium term prognosis
3. Daily timeframes (H4)
L1: 30-35 neurons – extended history
L2: 16-20 neurons – deep processing
L3: 8-10 neurons – additional hidden layer
L4: 8-10 neurons – long-term prognosis
4. Weekly and monthly timeframes
L1: 40-50 neurons – maximum history
L2: 20-25 neurons – high capacity
L3: 12-15 neurons – deep architecture
L4: 10-12 neurons – extended prognosis
Strategy-specific settings:
For T1Dif and T4 (analysis of price differences)
For T3Bin and T4Bin (binary classification)
Simplify architecture: L3 = 0
Reduce L2 by 2-3 neurons (minimum 6)
Optimal for fast learning and clear signals
For T2 and T2Dif (context-sensitive analysis)
Increase L2 by 2-3 neurons for better context
If L3 is present, increase by 2 neurons
Improves pattern and level recognition
Adaptation to instrument volatility:Highly volatile instruments (crypto, commodities)
Increase L1 by 3-5 neurons
Increase L2 by 2-3 neurons
Improves the network’s ability to handle sudden movements
Low volatility instruments (major pairs)
APPENDIX F – Gradient Limiting Recommendations for Each Activation Preset:
- Standard (Tanh-Tanh) GradientLimiting = false; // Tanh is resistant to gradient explosion
- Classic (Sigma-Sigma) GradientLimiting = false; // Sigmoid is self-limiting
- Lrelu_Linear (LReLU-Linear) GradientLimiting = true; max_grad = 0.1; // Default value for LReLU
- Bin_Momentum (ReLU-Sigma) GradientLimiting = true; max_grad = 0.08; // Stricter limitation for binary classification
- Asym_Output (Tanh-Tanh asymmetric) GradientLimiting = false; // Tanh is safe
- Relu_Network (ReLU-ReLU) GradientLimiting = true; max_grad = 0.1; // Required for pure ReLU
- Regression (Tanh-Linear) GradientLimiting = false; // Tanh + Linear are usually stable
- Mixed_Asym (Tanh-Sigma) GradientLimiting = false; // Both functions are safe
- Standard_Alt (Tanh-Tanh alternative) GradientLimiting = false; // Tanh is safe
- Relu_Regression (ReLU-Linear) GradientLimiting = true; max_grad = 0.12; // ReLU requires limiting
- LRelu_Network (LReLU-LReLU) GradientLimiting = true; max_grad = 0.1; // LReLU is better with limiting
- Full_Linear (Linear-Linear) GradientLimiting = true; max_grad = 0.15; // Linear activations are prone to exploding gradients
- Hybrid (Sigma-Tanh) GradientLimiting = false; // Both functions are safe
- Relu_Sigmoid (ReLU-Sigmoid) GradientLimiting = true; max_grad = 0.1; // ReLU requires limiting
- Combo_Relu_Tanh (ReLU-Tanh) GradientLimiting = true; max_grad = 0.1; // ReLU requires limiting
- Experimental (Sigma-Linear) GradientLimiting = false; // Sigmoid is safe
- Combo_LRelu_Tanh (LReLU-Tanh) GradientLimiting = true; max_grad = 0.1; // LReLU is better with limiting
- Combo_Tanh_Sigm (Tanh-Sigm) GradientLimiting = false; // Both functions are safe
Remember that these recommendations are general. Always test strategies on historical data of a specific instrument before using!
Note: The indicator uses historical data to make predictions. Past performance does not guarantee future profits. Trade responsibly.
آموزش مجازی مدیریت عالی حرفه ای کسب و کار Post DBA+ مدرک معتبر قابل ترجمه رسمی با مهر دادگستری و وزارت امور خارجه | آموزش مجازی مدیریت عالی و حرفه ای کسب و کار DBA+ مدرک معتبر قابل ترجمه رسمی با مهر دادگستری و وزارت امور خارجه | آموزش مجازی مدیریت کسب و کار MBA+ مدرک معتبر قابل ترجمه رسمی با مهر دادگستری و وزارت امور خارجه |
![]() مدیریت حرفه ای کافی شاپ | ![]() حقوقدان خبره | ![]() سرآشپز حرفه ای |
آموزش مجازی تعمیرات موبایل | ![]() آموزش مجازی ICDL مهارت های رایانه کار درجه یک و دو | آموزش مجازی کارشناس معاملات املاک_ مشاور املاک |
برچسب ها :Future ، Indicator ، Instructions ، Neuro ، recommendations ، September ، Trading
- نظرات ارسال شده توسط شما، پس از تایید توسط مدیران سایت منتشر خواهد شد.
- نظراتی که حاوی تهمت یا افترا باشد منتشر نخواهد شد.
- نظراتی که به غیر از زبان فارسی یا غیر مرتبط با خبر باشد منتشر نخواهد شد.



آموزش مجازی مدیریت عالی و حرفه ای کسب و کار DBA









ارسال نظر شما
مجموع نظرات : 0 در انتظار بررسی : 0 انتشار یافته : ۰